ABSTRACT

The vibration and the stability behaviour of a simply supported offshore pipe conveying fluid was investigated in this research work. The governing differential equation for the transverse vibration of the system was derived according to Euler Bernoullis’ equation for the fluid-pipe system and solved using the integral Fourier-Laplace Transformation. The effect of some flow parameters like mass ratios, Coriolis force and velocity of flow were analysed. The results revealed that natural frequency increased with increase in mass ratios and pipe thickness while it decreased with increase in pipe length. Flutter instability was observed in the system due to the presence of complex natural frequency where the imaginary part dominated the flow situation. The instability was made worse when Coriolis force was neglected.

Keywords: Flow parameters, Coriolis force, natural frequency, stability.
INTRODUCTION

Fluid conveying media are encountered almost on a daily basis either at homes or in the industry. Fluid conveyance attracts vibration as a result of the fluid moving from one end of the medium of conveyance to another. This vibration which can be mild and in some cases violent, depending on the nature of the fluid being conveyed and the properties of the medium of conveyance, can be detrimental if not well understood. Conveying pipes can be unstable at critical velocity leading to buckling (Paidousis, 1998; Doares, 2010).

Vibrations have been reported in the past to be responsible for so many industrial accidents, collapse, dangerous leakages leading to explosions, high noise and even fire (Ibrahim, 2010). Resonance always occurs when the natural frequency of a vibrating system equals an exciting frequency leading to magnified vibrations which if not put under control can jeopardize the life of the system. Coriolis force which is a term of fluid conveyance has received several attentions over the years. While it is seen as countering the centrifugal effects by absorbing energy in such a way that the balance between the two parameters in the absence of dissipation gives rise to flutter, however, destabilization can occur under non-conservative forces (Olunloyo et al., 2017).

The gyroscopic (Coriolis) forces, though, do no work in the course of free motions, they however have a strong influence on the overall dynamical behaviour of a pipeline system (Paidousis, 2014).

Olunloyo et al., (2007) studied the dynamics of offshore fluid conveying pipe and pipe walking phenomenon alongside the effect of elevated temperature. They concluded that there are significant contributions to pipe walking from other operating parameters rather than transient solution.

Environment of operations bearing in mind the possibility of excitations play a crucial role in the vibration of pipes. Pipes immersed in water respond differently from pipes suspended in the air. A buried pipe will not have the same excitation with the unburied and the depth of burial becomes very important in some cases. Decrease in stiffness as a result of increase in flow speed is largely responsible for the instability of a pipe and the stiffness vanishes at the critical speed of flow (Paidousis, 1998; Ibrahim, 2010). The instability which may be buckling or flutter may depend on some mechanical parameters and boundary conditions (Doares, 2010). Al-Sahib et al., (2010) investigated the stability of welded pipes both analytically and experimentally and concluded that clamped-clamped and clamped-pinned welded pipes conveying fluid are stable at small velocity but the clamped-pinned welded pipe loses stability at relatively high velocities. Ibrahim (2010) reported that Jones and Goodwin (1971) in their work obtained the lower bounds for the first Eigen values for low velocity thin pipe and showed that the Eigen values changed from real to imaginary as the fluid velocity increased through a critical flow velocity.

So many methods have been employed for beam problem analyses among which are those of Paidoussis and his co-workers who employed an Eigen function expansion in a modified Galerkin scheme (1998, 2000). The well known finite element method (Ibrahim, 2010), Several analytical methods (Olunloyo et al., 2007), the boundary element method (Elfesoufi and Azrar, 2005), dual reciprocity method (Nardini and Brebbia, 1982) and integral methods (Olunloyo et al., 2017) were also used by so many authors. Kutin and Bajsic (2014) employed smart materials and Jweeg and Ntayeesh (2015) made use of the application of method of multiple scales to analyze approximately the gyroscopic system for a nonlinear fluid-conveying pipeline.

The vibration and the dynamic stability of a simply supported offshore fluid-conveying pipe is considered in this work. The system being investigated consists of an elastic pipe of length L, internal cross-sectional area A, mass mp and flexural rigidity EI, having an elastic foundation and conveying a fluid of mass mf with a flow velocity U.

The following assumptions are considered in this research:

(i) the pipeline is idealized as an elastic beam, simply supported and lying on subsoil layer modelled as a homogeneous infinite continuum.

(ii) the flow is a fully developed pressurized incompressible viscous fluid.

(iii) the dynamic system is under the influence of both internal and external loads with overlaying seawater pipeline interfacial frictional and drag forces.

MATERIALS AND METHODS

Governing Differential Equation and Problem Formulation

![Fig. 1: A Model of Beam-Fluid System](image.png)
Based on the assumptions listed above, the governing differential equation in the transverse direction is written according to Olunloyo et al. (2007a) as

\[
\frac{\partial^2 w}{\partial t^2} + \frac{E}{I} \frac{\partial^4 w}{\partial x^4} + \psi \frac{\partial^3 w}{\partial t \partial x^3} + \frac{\partial}{\partial x} \left(\frac{\partial^2 w}{\partial t^2} + \frac{\partial}{\partial t} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial t^2} \right) \right) = \frac{\sigma(x, t)}{E I} + \frac{\partial^2 w}{\partial t^2} + \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial t^2} \nonumber
\]

Non-dimensionalization of Eq. (1) leads to

\[
\frac{\partial^2 \bar{w}}{\partial \zeta^2} + \frac{\partial^4 \bar{w}}{\partial \xi^4} + \psi \frac{\partial^3 \bar{w}}{\partial \zeta \partial \xi^3} + \frac{\partial}{\partial \xi} \left(\frac{\partial^2 \bar{w}}{\partial \zeta^2} + \frac{\partial}{\partial \zeta} \left(\frac{\partial^2 \bar{w}}{\partial \xi^2} + \frac{\partial^2 \bar{w}}{\partial \zeta^2} \right) \right) = \frac{\bar{\sigma}(\xi, \zeta)}{E I} \nonumber
\]

where,

\[
\bar{w}(\xi, \zeta) \nonumber \quad \bar{\sigma}(\xi, \zeta) \nonumber
\]

Analysis of the Governing Equation

Introducing Laplace transform namely

\[
\mathcal{L}\left\{ \bar{w}(\xi, \zeta) \right\} = \int_{0}^{\infty} \bar{w}(\xi, \zeta) e^{-st} d\zeta \nonumber
\]

Applying Fourier complex integral transforms according to Wrede and Spiegel (2002), Jeffrey (2002), Olayiwola (2016) and Olunloyo et al. (2017) namely:

\[
\mathcal{F}\left\{ \bar{w}(\xi, \zeta) \right\} = \int_{0}^{\infty} \bar{w}(\xi, \zeta) e^{-i\alpha \xi} d\zeta = F_{\alpha}(\xi, \zeta) \nonumber
\]

Applying the classical boundary conditions for a simply supported beam namely

\[
\bar{w}(0, \zeta) = 0, \quad \bar{w}(1, \zeta) = 0, \quad \bar{w}'(0, \zeta) = 0, \quad \bar{w}'(1, \zeta) = 0 \nonumber
\]

Eq. (8) becomes

\[
\left(\lambda s^2 - \delta \frac{s^3}{\gamma} \right) \bar{w}(\xi, \zeta) = 0 \nonumber
\]

where,

\[
\lambda = \frac{E I}{k}, \quad \delta = \frac{\psi}{k}, \quad \gamma = \frac{\xi}{k} \nonumber
\]
Analysis of the Natural Frequencies

Using the characteristic equation in Eq.(18) to obtain the natural frequencies of the system leads to

$$\left(s + \zeta_1\right)\left(s + \zeta_2\right) = 0 \quad \text{(20)}$$

Eq. (22) can be written as

$$\left(s + \zeta_1\right)\left(s + \zeta_2\right) = 0 \quad \text{(21)}$$

where,

$$\zeta_1 = \frac{-A_1}{2} + i\sqrt{\Lambda^2 - \frac{A_1^2}{4}}$$

$$\zeta_2 = \frac{-A_1}{2} - i\sqrt{\Lambda^2 - \frac{A_1^2}{4}} \quad \text{(22)}$$

The dimensionless natural frequencies for the system can be computed from Eq. (21) as follows

Let $\psi = -J\omega_\Lambda \quad \text{(23)}$

Eq. (21) then becomes

$$\left(i\omega_\Lambda \right) \left(-\omega_\Lambda^2 - i\omega_\Lambda A_1 + \Lambda^2 \right) = 0$$

$$\omega_\Lambda^2 + i\omega_\Lambda A_1 - \Lambda^2 = 0$$

$$\omega_\Lambda = \frac{iA_1}{2} - i\sqrt{\frac{A_1^2}{4}} \quad \Lambda^2 \quad \text{(24)}$$

Eq. (24) gives the natural frequencies of the system

Analysis of the Dynamic Stability

Let us consider Eq. (22) again, where,

$$\zeta_1 = \frac{-A_1}{2} + i\sqrt{\Lambda^2 - \frac{A_1^2}{4}}$$

$$\zeta_2 = \frac{-A_1}{2} - i\sqrt{\Lambda^2 - \frac{A_1^2}{4}}$$

The poles of the system are given by the roots of the characteristic equation in Eq. 22. The system is said to be stable when the characteristic equation has negative roots ζ_1 and ζ_2 (Ibrahim, 2010, Jone and Goodwin, 1971). The real parts of the conjugate pairs of the complex roots illustrate the stability while the imaginary parts illustrate the damping. The higher the values on the imaginary parts the lower the damping of the system (Paidousis and Issid, 1974). Argand diagram of the system is drawn using the real and imaginary parts of the poles $\text{Re}(\zeta_1), \text{Im}(\zeta_1), \text{Re}(\zeta_2)$ and $\text{Im}(\zeta_2)$ with the flow velocity, v, as the parameter.

Analysis of the Dynamic Response

Fourier-Laplace inversion of Eq. (18) gives the response of the system and it is written as

$$\bar{w}(x, t) = \sum_{n} B_n e^{\gamma_n t} \quad \text{(25)}$$

where,

$$B = \frac{1}{\psi} \int_{0}^{\psi} \bar{w}(x, t) e^{\lambda x} dx \quad \text{(26)}$$

Therefore,

$$\bar{w}(x, t) = \sum_{n} B_n e^{\gamma_n t} \quad \text{(27)}$$

but $z = -h$, therefore

$$\bar{w}(x, t) = \frac{1}{\psi} \sum_{n} B_n e^{\gamma_n t} \quad \text{(28)}$$

where,

$$\gamma_n = \zeta_n - \zeta_1 - \zeta_2 \quad \text{(29)}$$

RESULTS AND DISCUSSION

![Figure 2: Natural frequency (ω_1) profile as a function of delta for the case](image)

![Figure 3: Natural frequency (ω_1) profile as a function of mode for the case](image)

Figure 2: Natural frequency (ω_1) profile as a function of delta for the case

Figure 3: Natural frequency (ω_1) profile as a function of mode for the case

$L = 150 \ m, h = 100 \ m, \delta = 0.2$
Figure 4: Natural frequency (ω_1) profile as a function of L for the case $\delta = 0.2$, $h = 100$ m, $n = 1$

Figure 5: Natural frequency (ω_1) profile as a function of pipe thickness for the case $L = 150$ m, $h = 100$ m, $n = 1$

Figure 6: Natural frequency (ω_1) profile as a function of delta for the case $L = 150$ m, $h = 100$ m, $n = 3$

Figure 7: Natural frequency (ω_1) profile as a function of delta in the absence of Coriolis effect for the case $L = 150$ m, $h = 100$ m, $\delta = 0.2$

Figure 8: Natural frequency (ω_1) profile as a function of mode without seaway effect for the case $L = 150$ m, $h = 100$ m, $\delta = 0.2$

Figure 9: Imaginary natural frequency versus real natural frequency as a function of poles for the case $L = 150$ m, $h = 100$ m, $n = 1$, $\delta = 0.2$
The computations were done using 100 m long steel pipe with radius 0.4m, thickness 10 mm, density 7850 kg/m³, conveying a fluid of density 977 kg/m³, submerged in seawater with density 1025 kg/m³. From the results of the analysis carried, Fig. 2 shows the graph of natural frequency against the velocity of flow for different mass ratios. It can be seen from the graph that the natural frequency is very low at the beginning of the curve indicating that the system’s critical velocity is very low at the onset of flow after which the natural frequency rises again.

The graph of natural frequency against velocity of flow for different modes shown in Fig.3 reveals that the graph has two parts, firstly, natural frequency starts at some value and decreases with the velocity of flow till the lowest value after which it rises again. Natural frequency and the critical velocity in this case increase with modes with the lowest mode having the lowest starting natural frequency. Fig.4 has a similar profile with Fig.3 and that is because the lowest mode is considered. Natural frequency follows the same pattern as Fig.3 with the values decreasing with increase in pipe length. Effect of pipe thickness is showcased in Fig. 5 where a similar pattern with Fig.4 can be seen. Here, natural frequency increases with pipe thickness, meaning, thinner pipes will vibrate more because they possess lower flexural rigidity.

Fig. 6 is the curve of natural frequency against flow velocity for different mass-ratios for mode 3. Here, the natural frequency can be seen to start at higher values, and decreased to the lowest values before rising again. The effect of the absence of Coriolis force can be seen in Fig. 7, lower natural frequencies were obtained for all the modes considered compared with those of Fig. 2 which agrees with Plaut (2006) that Coriolis force does work. Fig.8 gives the curve of natural frequency against the flow velocity in the absence of sea-wave (when the sea is assumed calm). Natural frequency in this case is relatively high compared with those obtained in Figs. 3 and 7. It can be seen that, the natural frequency of the system is highly influenced by the sea waves as increase in natural frequency was observed in the absence of sea waves.

The Argand diagrams of the system are given by Figs. 9 and 10, showing the complex poles of the system represented by the first and the complimentary natural frequencies drawn with the real parts on the horizontal axis and the imaginary parts on the vertical axis. The poles are mirror images about the real axis. Fig. 9 has the presence of Coriolis, and the two poles having initial real values diverged into imaginary plane after some time. It follows that if a pole lies on the negative real axis, the vibration will die away and if it lies on the positive real axis, the vibration will grow. According to Ibrahim (2010), higher imaginary values increase oscillation of the system. It is observed that when the Coriolis effect is ignored as in Fig.10, the poles are highly influenced by the values on the imaginary plane leading to instability. But, with Coriolis, the poles lie in the negative real axis which shows that Coriolis contributes to the stability of the system. This agrees with the argument of Paidoussis (2014) on the role of Coriolis force. The dynamic response of the system as a function of velocity is illustrated in Fig. 11 showing that deformation increases with flow velocity.

CONCLUSION
This work investigated the dynamic vibration and stability of a fluid-conveying offshore pipeline system. Euler Bernoulli’s equation for the system was analysed and solved with the aids of Fourier-Laplace Transformation and the effects of important parameters like mass ratios, Coriolis force, pipe length and thickness were equally analysed. Coriolis force played a significant role on the stability of the system.
REFERENCES

